

Linking Economic and Energy Modelling with Environmental Assessment

when Modelling the On-Farm Implementation of Anaerobic Digestion

Andreas Muskolus, Andrew Salter, Philip Jones 15 January 2009

Why introduce AD onto farms?

World Energy Demand

Source: OECD/IEA World Energy Outlook 2004

World Energy-Related CO₂ Emissions

Source: Energy Information Administration

Why introduce AD onto farms?

European Union's Estimated Anthropogenic Methane Emissions by Source, 2005 $Total = 448.49 \text{ MMTCO}_2\text{E}$

Source: 2006 USEPA Report: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions:1990-2020

Why introduce AD onto farms?

- Production of renewable energy
- Reducing GHG emissions from agriculture
- Farm income diversification
- Recycling of nutrients in organic wastes
- Non-food use of agricultural products to reduce over-supply

The implementation of AD on a farm may have effects on

Farm economy The environment Sustainability of common energy supply

What are these effects?

It depends...

Economic effects of AD

may depend on:

- Investment costs
- Technical details of the biogas plant (good planning?)
- Cost of feedstock material and methane yield
- Gate fee for waste material?
- Energy prices
- Financial support

Modelling the Economic effects of AD

Optimising the farm Net Margin under given circumstances!

Linear programming (LP)

Environmental effects of AD

Effects which <u>can</u> be modelled	Effects which <u>cannot</u> be modelled
•Clear causality	•Very complex
•Relatively simple	•Causality uncertain
•Data available	•Data not available

Assessing environmental effects of AD

Assessing environmental effects of AD

Effects of AD on biodiversity - the example maize

No impact

Energy effects of AD

- Renewable
 - Non-fossil fuel based
 - Biomass based fuels
- Sustainable
 - Can produce the same or more energy each year
 - Without harm to the environment

Energy balance

- What is meant by an energy balance?
 = Energy out Energy in Energy out / Energy in
- Parasitic inputs
 - Direct energy
 - Indirect energy
- Beneficial outputs
- System boundaries

Crop based AD - energy flows and sources of emissions

Biomass based energy balance

7,429	GJ/yr
274	GJ/yr
2,109	GJ/yr
430	GJ/yr
10.9	TJ/yr
1.94	10 ⁶ m ³
20.8	TJ/yr
34.7	TJ/yr
0.7	TJ/yr
4.1	TJ/yr
20.1 (5597)	TJ/yr (MVVh/yr)
30.6 (8501)	TJ/yr (MWh/yr)
39.9	TJ/yr
4.7	
	7,429 274 2,109 430 10.9 1.94 20.8 34.7 0.7 4 .1 20.1 (5597) 30.6 (8501) 39.9 4.7

For a full assessment of the implementation of AD on a farm we need to examine all three aspects:

Economics Environmental impact Energy balance

Scenario development

- Wide range of possible scenarios
 - Type of farm arable, dairy, mixed
 - Size of farm
 - Proportion of crop material diverted to energy production
 - Organic or inorganic
 - Use of mineral fertilisers as opposed to recycled digestate
 - Import of organic waste from off farm
- Objective of the model
 - Economic, environment, energy

3 concepts for analysis

School of Biological Sciences

The Modelling Process

- Develop individual assessment models
- Develop interfaces
- Validate models against 'real' farm data and apply to farms identified in the farm survey
- Redefine and enhance models

Conclusion

- For a full evaluation need to consider economic, environmental and energy aspects
- Difficult to derive a single 'complete' model
- The three assessment methods can be linked, the outputs from one assessment used as inputs for another.

Southampton

School of Biological Sciences

Funded under the RELU project: Integrated systems for farm diversification into energy production by anaerobic digestion: implications for rural development, land use & the environment

More information can be found at: http://www.AD4RD.soton.ac.uk

Southampton

School of Civil Engineering and the Environment

