Felu Rural Economy and Land Use Programme

Integrated systems for farm diversification into energy production by anaerobic digestion: implications for rural development, land use & environment

Modelling the profitability of AD, at the farm level, within arable and dairy systems

Philip Jones

Primary objectives

Assess the economics of farm-based biogas production and any associated land use and farm practice changes.

- Combines outputs from other work packages

Two objectives:

- (1) Construct a set of farm level models with integrated AD component
- (2) Model a suite of scenarios (to include use of on-farm wastes as digester feedstock)

Construct farm-level models (1)

<u>Tasks</u>

- Develop a UK based digester cost model (UK based)
 - Capital costs
 - Running costs
 - Configuration, scale, feedstock
- 2. Construct a suite of farmlevel models
- 3. Embed the digester cost model into the farm models

Characteristics

- 4 farm type/farm size combinations
 - Med-large arable/mixed
 - Large specialist dairy
 - Small livestock farm
 - Medium sized horticulture
- Digester size determined by availability of feedstock
- Real-world data where available
- Performance measure –
 Net Margin

The LP approach: Model allocates land and other resources to enterprises on basis of their contribution to the Net Margin of the farm – model has to maximize this.

- Three sources of constraint:
 - (1) Structural limitations of the farm
 - resources available (land, labour, capital)
 - (2) Rotational practice
 - (3) Scenario specification
 - government policy
 - market conditions

Cereals farm model (farm structure)

- Specialist cereals farm, eastern counties of England
 - Cereals / arable crops
 - simple rotations, continuous cropping
 - large field sizes, high levels of mechanisation, low labour input
- Dimensions based on FBS data (average for region)
 - 312 ha
 - Labour 1100 M.D. (farmer plus 4 FT staff)
- Number of fields and between field yield variation notional

Cropping enterprises

Crop enterprise	Seed yield	Residues	Whole-crop	Nitrogen	Potassium	Phosphate
	(t/ha)	(t/ha)	yields (t/ha)	(N, kg/ha)	(K, kg/ha)	(P. kg/ha)
Winter wheat	8.3	11.7	38.6	200	70	70
Winter barley	6.4	7.8	37	180	70	70
Winter oats	6.5	8.7	37	120	60	60
Other cereals (triticale)	6.0	4.5	31.3	180	70	70
Oilseed rape	3.4	-	46.2	210	40	40
Field peas	4.4	6.0	40.1	0	50	40
Field beans	3.8	6.0	50.7	0	50	40
Sugar beet	58.6	20	82	100	75	50
Potatoes (maincrop)	45.0	0	45	220	250	150
Maize (forage)	N.A.	0	45.4	130	140	50
Other fodder crops	60.0			125	150	60
(fodder beet)		35.0	91			
Field-scale veg (swedes)	75.0	20.0	95	80	125	125
Grass silage	45.0	0	45	220	150	90
Fallow	N.A.	N.A.	N.A.	0	0	0

Crop rotations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
First wheat	Second wheat	Potatoes	First wheat	Barley	OSR

- Adopted a 6 year rotation
- Any crop not susceptible to the same diseases as cereals is considered a break crop
- Model reflects average over whole rotation, ie. contains average area of all crops grown over 6 years
- Restraints require that:
 - wheat+barley+maize < 66% of area (ie min. 33% break crops)
 - No single crop > 33% of area
 - Potatoes and veg. < 15% of area

Methane yields

Crop enterprise	Methane yield of	Methane yield of	Methane yield of
	seed (m ³ /t FM)	crop residues	whole (green)
		(m³/t FM)	crop (m ³ /t FM)
Winter wheat	298	142	125
Winter barley	307	125	82
Winter oats	307	213	76
Other cereals (triticale)	307	213	110
Oilseed rape	285	253	50
Field peas	-	254	47
Field beans	-	254	47
Sugar beet	71	34	81
Potatoes (maincrop)	27	0	27
Maize (forage)	232 (grain)	164	99
Other fodder crops (fodder	42	34	74
beet)			
Field-scale veg (swedes)	42	31	74
Grass silage	74	74	70
Fallow			

The AD unit

relu Rural Economy and Land Use Programme

Dimensions

- Any scale up to capacity of 500 kW
 - 'med-large'
- operating time (347 days p.a.)
- Conversion efficiency (35%)
- Electricity output 4,161,000 kWh
- Methane requirement 1.4M m³
- Feedstocks:
 - Seed/grain
 - Crop residues
 - Whole-crop

- Total interest charge £175k p.a.
 - AD unit 4% interest and repayment over 10 years = £114,268 (av.)
 - Silage clamp of 8400t capacity (£500k) -Interest £61,500
- Maintenance £29,000
- Labour £10,850
- Total operating costs £215k

Digestate

- Digestate available as fertilizer
 - Nutrients assumed to remain unaltered by digestion
- Nutrient content (N, P, K) estimated of each crop separately on bases of:
 - nutrients levels applied to crop each year
 - Proportion of plant remaining in (or on) land
- Difference between the nutrients available from digestate and the nutrient requirements of crops is made up by fertilizer purchases

Scenario requirements

- Scenario modelling:
 - Test the financial viability of AD under a range of conditions
 - Farm types, AD scales etc
 - Test likely success of range of government policies to encourage AD
 - Viability under a range of market conditions
 - Allow calculation of impact on energy balances of above options

Scenario definitions

Scenario objectives	Scenario definition			
Farming objectives				
o Personal benefitso Societal benefits	o Max farm net margin (S1)o Max energy output			
Market conditions				
o Agricultural commoditieso Renewable energy	o Higher commodity prices (S2)o Lower/higher energy prices			
Government policies				
Agric./rural/environmentRenewable energy	 o Pillar II funding changes o 50% lower feed-in tariff (S3) o Abolition of feed-in tariff (S3) 			
o Imported AD feedstocks	 o Forage maize (S4) o Slurry (S4) o Food waste 			

Reference run: arable farm model (no AD) Rural Economy and Land Use Programm

- Differences in cropping pattern due to price signals in 2009.
 - Loss of wheat
- 2/3 farm in cereals/oilseeds/ maize
- 1/3 in break crops
- New crops added: field veg & peas/beans

Scenario 1 – AD activity available

Scenario 3 – Reduced Feed-in tariff

Scenario 4 – Importation of feedstocks

Conclusions

- AD out-performs alternative uses of 4 feedstock crops fodder beet, wheat, sugar beet and forage maize
 - Also true at significantly higher commodity prices
 - AD use of slurry does not have to compete with other uses.
- At the farm level, for these two farm types and sizes, AD is comfortably economic
 - Biggest improvement in N.M. seen in arable farm
- Two modes of AD operation (competing and complementary)
 - Arable farm AD main commercial focus
 - Dairy farm milk production main focus
- Significant nutrient cost savings can made (esp. N)
- Modelling confirms slurry use as rational choice, but wheat and sugar beet preferred to forage maize
- Scale limit set by availability of land to spread digestate

Further information

• Full report coming soon to project website:

http://www.ad4rd.soton.ac.uk/

Scenario 1 – AD activity available

Scenario 2 – Higher commodity prices

relu Rural Economy and Land Use Programme

University of **Reading**

Scale of AD unit

Scenario 3 – Reduced Feed-in tariff

