

Energy Balances and Emissions for Farm Based AD

Dr. Andrew Salter

RELU Farm based AD Final dissemination event 28th September 2010

Outline

- Energy balances
- Potential methane yields
- Greenhouse gas emissions
- The AD tool
- Some examples

ENERGY BALANCES

Energy balance

- What is meant by an energy balance?
 - = Energy out Energy in
- Energy
 - Direct energy
 - Indirect energy
- Beneficial outputs
- System boundaries

Positive or negative?

- Need to identify what energy goes in
- What energy comes out

Three phases of fuel production

METHANE POTENTIALS

Potential crops for biogas -

- Barley
- Cabbage
- Carrot
- Cauliflower
- Clover
- Elephant grass
- Flax
- Fodder beet
- Giant knotweed
- Hemp
- Horse bean
- Jerusalem artichoke

- Kale
- Lucerne
- Lupin
- Maize
- Marrow kale
- Meadow foxtail
- Miscanthus
- Mustard
- Nettle
- Oats
- Pea
- Potato

- Oilseed rape
- Reed canary grass
- Rhubarb
- Ryegrass
- Sorghum
- Sugar beet
- Triticale
- Turnip
- Verge cuttings
- Vetch
- Wheat

Methane yields

Effect of harvest date

Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H., Schreiner, M. & Zollitsch, W. (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. *Bioresource Technology*, 98, 3204-3212.

GREENHOUSE GAS EMISSIONS

Sources of GHGs

- Arable farms
 - Mineral fertilisers
 - Diesel fuel use
- Dairy farms
 - Manure management
 - Mineral fertilisers
 - Diesel fuel use

Sources of emissions

THE AD TOOL

EXAMPLE RESULTS

Energy balance - dairy

GHG emissions - dairy

GHG emissions - arable

Conclusion

- Many different agricultural materials and residues can be digested
- Nutrient management on farms is vital and feedstocks can be adjusted to optimise digester efficiency and crop requirements
- Digestate can make a large contribution to mineral fertiliser replacement
- Biogas and digestate can be used to reduce energy requirements and greenhouse gas emissions

Thank you

www.AD4RD.soton.ac.uk

