

AD in an integrated farming environment

Dr Andrew Salter

Anaerobic Digestion and Biogas Association National Exhibition Centre, 07 July 2010

AD 4 RD

- Integrated Systems for Farm Diversification into Energy Production by Anaerobic Digestion
- Rural Economy and Land Use (RELU)
- University of Southampton
 - School of Civil Engineering & the Environment
 - School of Biology
- University of Reading,
 - Centre for Agricultural Strategy
 - http://www.AD4RD.soton.ac.uk

Dr. Andrew Salter

AD 4 RD

- Research areas include:
 - Policy and practice
 - Social implications/perspectives
 - Economics
 - Environmental impacts
 - Energy and GHG emissions

Dr. Andrew Salter ADBA, NEC, 2010

AD - feedstocks and outputs

- AD creates two products
 - -Biogas = energy
 - Digestate = bio-fertiliser
- Can change the amounts/balance of both of these by changing the materials fed in to the digester

Dr. Andrew Salter ADBA, NEC, 2010

Crops for bio-fuel (energy) production Southampton

- for bio-diesel • for bio-ethanol • for biogas
 - oilseed rape
- wheat
- crops

- sunflower
- sugar beet
- agricultural

- linseed
- maize
- wastes

- soya
- sugar cane
- green waste

- Jatropha

- Peanut

- lignocellulosic material

Potential crops for biogas -

- Barley
- Cabbage
- Carrot
- Cauliflower
- Clover
- Elephant grass
- Flax
- Fodder beet
- Giant knotweed Nettle
- Hemp
- Horse bean
- Jerusalem artichoke

- Kale
- Lucerne
- Lupin
- Maize
- Marrow kale
- Meadow foxtail
- Miscanthus
- Mustard
- Oats
- Pea
- Potato

- · Oilseed rape
- Reed canary grass
- Rhubarb
- Ryegrass
- Sorghum
- Sugar beet
- Triticale
- Turnip
- Verge cuttings
- Vetch
- Wheat

Dr. Andrew Salter ADBA, NEC, 2010

Methane yields

Effect of harvest date

Dr. Andrew Salter ADBA, NEC, 2010

Environmental & Ecological Impacts

Aims

- Assess potential impacts on biodiversity of diversification into farm energy production through AD (i.e. dedicated energy crops)
- Develop conceptual model / framework to identify impacts for management & mitigation

Dr. Andrew Salter ADBA, NEC, 2010

Environmental impact assessment | Exercise | Posterior | Posterio

Environmental impact scores

	Regulating		Supporting		
	Pest Control	Pollination	Soil Formation	Nutrient Cycling	Primary Production
Winter Wheat (conventional)	-6.5	-7.5	-7.5	-7.5	-7.5
Oilseed rape (conventional)	-6.5	-6.5	-7.5	-7.5	-7.5
Maize	-6.5	-7.5	-7.5	-7.5	-7.5
Grass (3 cut silage)	-3.5	-3.5	-2.5	-2.5	-5
Spring Wheat (conventional)	-4	-6	-6.5	-6.5	-5.5
Winter Wheat (organic)	+1	+1.5	+1	+1	+2.5
Grass (organic)	+2	-1	+2	+2	-0.5

Dr. Andrew Salter ADBA, NEC, 2010 Southampton School of Hological Sciences

Economic potentials

- Optimise net margin for whole farm
 - Linear programming
 - Compare inputs, outputs and costs for a range of farm enterprises
- Example
 - Cereal farm model
 - Based on East of England
 - Farm size 312 ha (average of FBS)

Dr. Andrew Salter ADBA, NEC, 2010

Reference scenario

• Based on 2009 prices

Introducing AD

Changing the electricity value

Imported feedstock Southampton School of Civil Engineering and the Environment Scenario 4 - imported maize 120 100 80 60 40 ■ Feedstock 20 Food Otherceteals , Eleas beans Mathe Silage todder coos July Sugar beet Potatoes oliseeds Field Veb Wheat Barley Oats Scenario 1 (kg) 18,387 9,768 9,359 Percentage change -100 -100 Scenario 4 (importation of feedstocks) (kg) Nitrogen (N) Potassium (k) Phosphorous (P) Dr. Andrew Salter ADBA, NEC, 2010

Sources of GHGs

- Arable farms
 - Mineral fertilisers
 - Diesel fuel use
- Dairy farms
 - Manure management
 - Mineral fertilisers
 - Diesel fuel use

Dr. Andrew Salter ADBA, NEC, 2010

GHG emissions - arable

GHG emissions - dairy

Integrated farming approach

- Can combine food and energy production.
 - Utilise break crops for energy and environment
- Reduce mineral fertiliser use with digestate and legume crops
 - legume (clover) before wheat to capture nitrogen, can be digested and used as feedstock
- Use crop residues as a resource for energy production and then nutrients

Dr. Andrew Salter ADBA, NEC, 2010

An integrated example

Conclusions

- Many different crops can be used as feedstock depending on the circumstances
 - Grass multiple harvest dates
 - Whole crop cereals earlier than Maize and range of possible harvest dates
 - Headlands and margins
 - Rotation systems
- Alternative cropping systems help to maximise yield and minimise use of artificial fertiliser
 - Reduce costs
 - Reduce GHG emissions

Dr. Andrew Salte

Thank you

This research is funded by UK Research Councils under the Rural Economy and Land Use Programme (RELU)

More information can be found at:

http://www.AD4RD.soton.ac.uk

http://www.cropgen.soton.ac.uk

