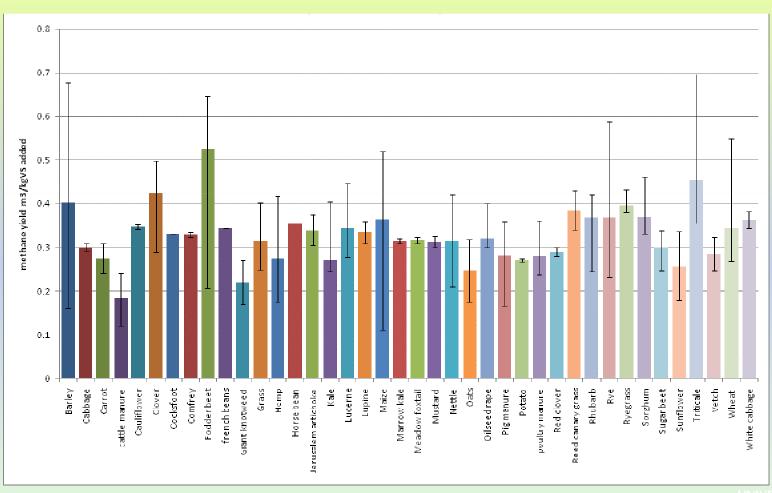
Integrated systems for farm diversification into energy production by anaerobic digestion: implications for rural development, land use & the environment

Agroenergetics, crop species & energy balances

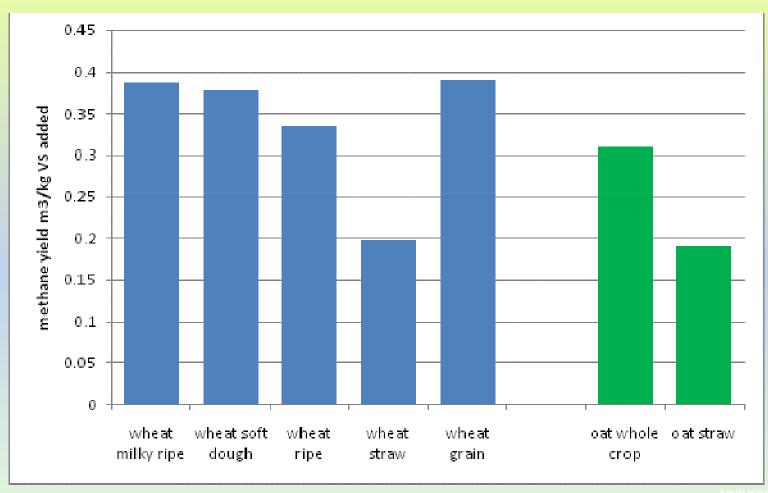
Andrew Salter

AD4RD
Steering group meeting
University of Reading
01 February 2008

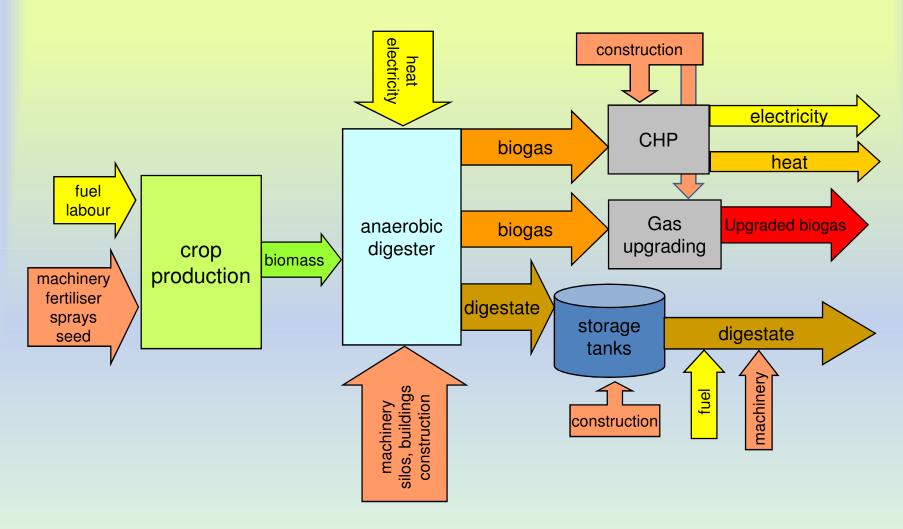


Outline of work

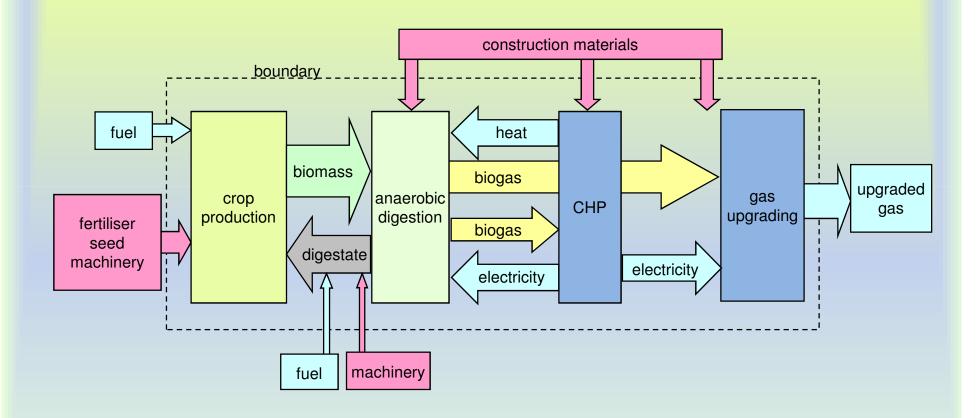
- Crop species
 - growth stages
- Energy models
 - emissions



Methane yields - feedstocks



Methane yields – growth stage



Energy models -the digestion 'system'

Energy balances

Energy balances

Scenario 6

crop		maize	whole crop triticale	fodder beet	sunflower	lupin	perennial ryegrass	timothy grass	lucerne
crop production	GJ/yr	4231	4662	5377	4664	9636	9841	7128	5808
crop transport	GJ/yr	274	282	525	274	952	552	471	493
digester embodied energy digestate transport &	GJ/yr	2109	2109	2109	2109	2109	2109	2109	2109
spreading	GJ/yr	430	432	1009	414	1126	786	701	749
total deficit	TJ/yr	7.0	7.5	9.0	7.5	13.8	13.3	10.4	9.2
CH ₄ (in biogas)	10 ⁶ m ³ /yr	1.94	1.94	1.78	1.66	1.78	1.94	1.89	1.89
CH₄ required for CHP	10 ⁶ m ³ /yr	0.38	0.38	0.41	0.33	0.41	0.41	0.39	0.40
surplus			•						
CH₄ in upgraded biogas	10 ⁶ m ³ /yr	1.57	1.57	1.37	1.34	1.37	1.53	1.49	1.49
energy value	TJ/yr	55.9	55.9	48.9	47.7	48.8	54.7	53.3	53.2
energy balance	TJ/yr	48.8	48.4	39.9	40.3	35.0	41.4	42.9	44.0
energy ratio (out/in)		7.9	7.5	5.4	6.4	3.5	4.1	5.1	5.8
energy in diesel equivalent	10 ⁶ l/yr	1.56	1.56	1.37	1.33	1.36	1.53	1.49	1.49

Greenhouse gas emissions

Greenhouse gas emissions from the production and use of transport fuels, biofuels and other bioliquids shall be calculated as:

```
E = eec + el + ep + etd + eu - eccs - eccr - eee,
```

Where:

E = total emissions from the use of the fuel;

eec = emissions from the extraction or cultivation of raw materials;

el = annualised emissions from carbon stock changes caused by land use change;

ep = emissions from processing;

etd = emissions from transport and distribution;

eu = emissions from the fuel in use;

eccs = emission savings from carbon capture and sequestration;

eccr = emission savings from carbon capture and replacement; and

eee = emission savings from excess electricity from cogeneration.

Emissions from the manufacture of machinery and equipment shall not be taken into account.

